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ABSTRACT
One of the key factors for obtaining accurate and reliable results using the finite element method is the 
discretisation of the domain. Traditionally, two main types of elements are used for three-dimensional 
mesh generation: tetrahedral and hexahedral elements. Tetrahedral meshes are automatically generated 
but standard displacement-based tetrahedral elements generally suffer from performance issues in terms 
of convergence rate and accuracy of the solution associated with volumetric and shear locking. Because 
of these distinct disadvantages, hexahedral meshes have been used up until now for the design of 
biomechanical models of the orofacial system in particular for medical applications. However, hexahedral 
meshing is very costly and labour-intensive when the mesh must be hand-made. The aim of the present 
contribution is to evaluate the performance of mixed element meshes as an alternative to all-tetrahedral 
or all-hexahedral meshing for the analysis of problems involving nearly incompressible materials at large 
strains. The case study of a semi-confined compression experiment of an elastic cylindrical specimen was 
analysed. The theoretical expression of deformation was derived from the literature. We observed that 
linear mixed element meshes allowed results very close to those obtained using hexahedral ones. As a 
second experiment, we generated a mixed element mesh of the tongue and analyse its simulated response 
to activation of the posterior Genioglossus muscle. Overall, our results show that mixed element meshes 
can be used as computationally less demanding alternative to all-hexahedral meshes for the analysis of 
problems involving nearly-incompressible materials at large strains.
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1. Introduction

Finite element analysis (FEA) is a very popular research tool 
that has been used in the last two decades to provide insights 
into the biomechanics of the orofacial system, and, more spe-
cifically: (i) for studying non-pathological tongue functions 
such as speaking (Wilhelms-Tricarico 1995; Dang & Honda 
2004; Buchaillard, Perrier, et al. 2009) or swallowing (Kieser et 
al. 2014) and (ii) for improving the clinical treatments of upper 
airway disorders such as obstructive sleep disorders (Zhao 
et al. 2013; Pelteret & Reddy 2014) and functional impair-
ments associated with tongue surgery (Buchaillard, Brix, et al. 
2007; Fujita et al. 2007). Previous work from the authors have 
focused on the development of a three-dimensional (3D) 
finite element (FE) biomechanical model of the main speech 
articulators for: (i) speech production modelling (Buchaillard, 
Perrier, et al. 2009; Nazari, Perrier, Payan 2013) and (ii) the 
preoperative prediction of the consequences of carcinologic 
tongue resection on tongue mobility (Buchaillard, Brix, et al. 
2007).

Finite element meshing is a key factor for obtaining accurate 
and reliable results. Traditionally, two main types of elements are 
used for three-dimensional mesh generation: tetrahedral and 

hexahedral elements. Tetrahedral meshes are more easily auto-
matically generated. However, the standard displacement-based 
tetrahedral element (Bathe 1982) suffers from several distinct dis-
advantages, namely (i) reduced order of convergence for strains 
and stresses (Payen & Bathe 2011) and (ii) stability issues associ-
ated to shear locking, volumetric locking (Joldes et al. 2009; Onishi 
& Amaya 2014) and pressure checkerboard instabilities (Andrade 
Pires et al. 2004). Volumetric locking in finite elements has been 
a major concern since its early developments. This is an artificial 
stiffening that appears when modelling the response of incom-
pressible (or almost incompressible) materials such as biological 
soft tissues (Joldes et al. 2009). The incompressible nature of the 
material translates into kinematic constraints that force the Finite 
Elements to deform with a constant volume (Ponthot 1995). The 
consequence is that the degrees of freedom of the Finite Element 
mesh are no longer independent, as they should be in theory, 
resulting in an overconstrained problem.

To avoid volumetric locking associated with tetrahedral ele-
ments, hexahedral meshes have been used until now, in previous 
works from the authors, for the design of biomechanical mod-
els. A generic tongue mesh was manually designed by Gérard 
et al. (2003) and improved by Buchaillard, Perrier, et al. (2009) in 
the ANSYS framework, based on a combination of information 
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and industry. The versatility of tetrahedra helps to mesh complex 
geometries. Tetrahedral meshing procedures are mainly based on 
the Advancing Front Technique (Lhner & Parikh 1988), the Octree 
methods (Shephard & Georges 1991) and the Voronoi Delaunay-
based methods (Weatherill & Hassan 1994). Many of the devel-
oped techniques have been implemented in the preprocessing 
modules of commercial finite Element software products, such 
as ANSYS, ABAQuS and Altair HyperMesh. They are also freely 
available in many open source projects, such as TetGen (Si 2015) 
and the Computational Geometry Algorithms Library2.

Automatic hexahedral mesh generation, on the other hand, is 
still considered to be a challenging research topic (Tautges et al. 
1996; Viceconti & Taddei 2003). Hexahedral meshing algorithms 
are generally grouped into five main categories (Zhang & Bajaj 
2006; Fernandes & Martins 2007; Kowalski et al. 2015): (i) mapped 
and sweeping meshing techniques (Hannaby 1988), (ii) medial 
surface techniques (Price & Armstrong 1997), (iii) plastering tech-
niques (Blacker & Meyers 1993), (iv) indirect meshing techniques 
and (v) grid-based techniques (Schneiders 1996). Some of the 
developed techniques have been implemented in commercial 
FE meshing software packages such as TrueGrid which features 
a multi-block approach (a mapped and sweeping meshing tech-
nique). This technique has successfully been used for the crea-
tion of a hexahedral mesh of the femur (Schonning et al. 2009). 
However, the authors reported an extensive amount of manual 
intervention.

Several works, especially from the computer graphics com-
munity are contributing to help converge to a solution for the 
automatic all-hexahedral meshing problem. The  PolyCube-Maps, 
introduced by Tarini et al. (2004), was conceived as a mechanism 
for superior texture mapping in a computer graphics context. 
Other groups (Livesu et al. 2013; Huang et al. 2014) used this 
technique as a starting point to develop  algorithms to produce 
an all-hexahedral mesh. Another approach (Lin et al. 2012) needs 
user interaction to define skeletons that allow to produce hexa-
hedral meshes. Finally the work of Li et al. (2012) needs, first, a 
tetrahedral mesh to compute a singularity- restricted field which 
allows to build an all-hexahedral mesh. However/ the authors 
mention that they cannot ensure that a restricted field can 
always be found, and, therefore, that a pure hexahedral mesh 
can always be produced with their approach. The main draw-
back of these techniques is that they tend to  produce regular 
meshes, which may lead to an excessive number of nodes and 
elements in regions where they are not needed. This increases 
computational time for the simulation. Overall, the use of auto-
matic hexahedral meshing procedures is still limited due to 
robustness issues and time needed to compute the simulation 
in some cases.

As an alternative, hybrid meshing or mixed element methods, 
where tetrahedra, prisms and pyramids are combined with hex-
ahedra, have been used in various engineering scenarios, such 
as, for example, Computational Fluid Dynamics applications 
(Khawaja & Kallinderis 2000) and computer graphics simulations 
(Martin et al. 2012). The main issue adressed in the literature is 
the development of methods for interfacing tetrahedra with hex-
ahedra (Conti et al. 1991; Owen & Saigal 2001; Nicolas & Fouquet 
2013).

Related work on the development of both hexahedral and 
mixed element meshing algorithms reported in the literature is 

extracted from the Visible Human Project1 data-set and from 
Takemoto’s (2001) dissection data Takemoto 2001.

in order to account for muscle force application, macro-fibres, 
joining the FE nodes of the elements associated with a tongue 
muscle according to the muscle fibres? directions, were defined 
using external force generators. External distributed forces were 
enforced along the edges of the elements to simulate active mus-
cle force generation. This modelling approach imposed important 
constraints on mesh design, as the hexahedral FE mesh had to 
be created in such a way that their vertices corresponded to the 
fibre directions for realistic muscle force orientation patterns. This 
functional modelling of muscle force distribution proved to be 
very useful for testing motor control models in speech production 
(Buchaillard, Perrier, et al. 2009; Nazari, Perrier, Chabanas, et al. 
2011) and for evaluating the consequences of oral cancer surgery 
on tongue mobility (Buchaillard, Brix, et al. 2007). However, the 
developed tongue mesh proved to be limited: first in its capacity 
of handling complex articulatory patterns such as those observed 
in retroflex consonants (produced with the tongue tip curled 
back), involving strong curvature of the tongue’s surface; and 
second in its capacity of accounting for palate/tongue contacts 
with sufficient spatial accuracy. Thanks to the recent progress in 
the development and implementation of FE formulation of mus-
cle models, among others by the authors (Nazari, Perrier, Payan 
2013), it is now possible to decouple muscle implementation/
representation and mesh design. This freedom enables to inves-
tigate crucial issues underlying mesh design such as automatic 
mesh generation, simulation accuracy and computation time.

An alternative to both all-tetrahedral and all-hexahedral ele-
ment meshes is the use of mixed elements (tetrahedra, triangular 
prisms, square pyramids, hexahedra). The overall idea is to take 
advantage of the benefits of combining both tetrahedral and 
hexahedral elements in order to automatically mesh almost any 
complex domain while using, thanks to a high ratio of hexahedral 
elements, the properties of these latter elements for numerical 
simulations of nearly-incompressible problems.

The goal of the present study is to evaluate the performance 
of a mixed element meshing technique we recently developed 
(Lobos & González 2015). The modeling context of this study 
is incompressible materials at large strains. Evaluation is done 
by comparing the simulation results obtained using the mixed 
element mesh with those obtained using all-tetrahedral and all- 
hexahedral meshes. To this end, we first evaluate the deformation 
of a cylindrical specimen of soft-tissues under uni-axial compres-
sion using a semi-confined configuration, for which (Miller 2005; 
Morriss et al. 2008) derived an analytical solution. Second, results 
provided by mixed element tongue meshes are quantitatively 
compared to all-hexahedral and all-tetrahedral meshes.

2. Meshing background

2.1. Related work on meshing techniques

in this section the main techniques used to generate meshes 
are discussed with regard to the type of elements they employ 
to achieve a discretisation: tetrahedra, hexahedra and mixed 
elements.

Automatic three-dimensional tetrahedral mesh generation 
has been extensively studied (Thacker 1980) and tetrahedral 
meshing procedures have become commonplace in research 
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generally motivated by meshing challenges. Therefore, evaluation 
usually consists in demonstrating the performance of the devel-
oped method on several complex 3D geometries and evaluating 
the results with standard shape-quality metrics (Santis et al. 2011; 
Pellerin et al. 2014; Wu & Gao 2014; Kowalski et al. 2015).

2.2. Developed mixed element meshing technique

We recently reported a new automatic mixed element meshing 
technique (Lobos & González 2015). in a few words, our algo-
rithm is based on the Octree technique, which starts with a 
bounding box (hexahedron), and recursively splits it into new 
octants. The octants that are left completely outside the input 
domain are removed from the mesh. The octants intersecting 
the boundary of the input domain may be replaced with mixed 
elements to achieve a better representation of curved domains. 
Finally, mixed elements are also introduced between fine and 
coarse regions to produce a conformal mesh.

The main input to the algorithm developed in Lobos and 
González (2015) is a closed triangular mesh describing the domain 
for which a volume mixed element mesh is required. Our auto-
matic algorithm then determines a set of octants that enclose the 
entire input domain. The octants can be seen as spaces that hold 
other smaller octants or a set of geometrical elements. in most 
cases, the Octant is a regular hexahedron (a cube). Depending 
on the problem domain, more than one octant can be used as 
starting point: one cube may be a good starting point to enclose 
a brain, but a bad one to enclose a femur bone.

in this work, the Refinement Level (RL) of an Octant refers to 
the number of recursive splits into new octants. For instance, if 
an Octant has RL = 2, it means that it was split into 8 new octants, 
and each one of them into 8 new ones, so the space covered by 
the original cube is now represented by 8 × 8 = 64 new octants. 
Note that in 2D this would be 4 × 4 = 16 new squares.

Now let us consider the visual example in 2D of Figure 
1(a), where Octant 1 intersects a section of the boundary 
while the other 2 are inside the input domain. if we impose 
RL = 2 for Octant 1 (see in Figure 1(b)) the resulting mesh is 
non-conformal.

The transition between octants with different RL is achieved 
using a set of patterns explained in González and Lobos (2014). 
Each pattern is composed by several sub-elements and conse-
quently, the Octant is no longer one cube. This is the first step 
in our algorithm that introduces mixed elements: tetrahedra, 
pyramids, prisms and hexahedra. We have considered all possi-
ble configurations when the difference in RL between the tran-
sition Octant and its neighbors is no greater than 1. We call this 
property (the difference in RL): 1-irregular. For instance, in the 
configuration of Figure 1(b), Octant 2 is the only one that is not 
1-irregular because Octant 1 has RL = 2 while Octant 2 has RL = 
0. in order to achieve the 1-irregular property we must split once 

Octant 2 and now the property is fulfilled throughout the mesh 
(see Figure 1(c)).

The next step is to decrease the chances of producing inverted 
elements when trying to achieve boundary representation. The 
collared octants in Figure 1(c) intersect the boundary, meaning 
that those quadrilaterals (hexahedra in 3D) have some nodes 
inside and outside the input domain. We will refer to them as 
Surface Elements or Surface octants. A previous work (Lobos 
2013) analysed node configuration of Surface octants that may 
produce invalid hexahedra. if that is the case, the hexahedron is 
replaced by mixed elements that decrease the chance of produc-
ing inverted elements.

The result after Surface and Transition patterns are applied 
can be seen in Figure 1(d). it may be seen that some unnecessary 
triangles were inserted in the 2D example, however this ensures 
the output mesh will be conformal in the much more complicated 
configurations of 3D problems.

As previously mentioned, the domain’s boundary is not the 
only input to our algorithm. There are some options that define 
the way the refinement is achieved. We have defined criteria 
like: every Surface Octant must be refined to level x, or all the 
elements in the mesh must be refined to level y. These criteria 
can be combined. For instance, the example of Figure 1 was pro-
duced demanding a RL = 2 for Surface octants. if we now con-
sider an example with Surface RL = 2 and RL = 1 for all the rest, 
the equivalent of Figure 1(b) would be immediately 1-irregular 
with octants 2 and 3 refined to the same level. The equivalent 
output would be the same as Figure 1(d) except for the three 
triangles representing Octant 3, that would be represented by 
four quadrilaterals.

3. Materials and methods

3.1. Analytical solution of a semi-confined compression 
experiment

To assess the influence of three-dimensional finite element 
mesh when simulating the finite deformation of an incom-
pressible material, the semi-confined compression experiment 
described in Miller (2005), for which an analytical solution has 
been derived based on Klingbeil and Shield (1966), is simulated. 
The experiment consists in testing in compression a cylindrical 
specimen with low-aspect ratio. in the semi-confined config-
uration, the top and bottom faces of the specimen are rigidly 
attached to the platens of the stress–strain machine to ensure 
no-slip boundary conditions. Thanks to the availability of the 
analytical expression of the shape of the deformed specimen, it 
is possible to compare the theoretical maximum displacement 
of the cylindrical specimen with the maximum displacement 
obtained using the Finite Element Method. For reference, we 
recall the formulae in Appendix 1.

(a) (b) (c) (d)

Figure 1. (a) only octant 1 intersects the boundary, (b) octant 1 reaches rl = 2, (c) the mesh is one-irregular and colored small octants of octant 1 intersects the boundary 
and (d) the final result after surface and transition patterns are employed to produce a conformal mesh that approximates the input boundary.

D
ow

nl
oa

de
d 

by
 [

15
2.

77
.2

41
.1

10
] 

at
 0

0:
26

 0
9 

O
ct

ob
er

 2
01

7 



COMPuTER METHODS iN BiOMECHANiCS AND BiOMEDiCAL ENGiNEERiNG: iMAGiNG & ViSuALiZATiON  393

The model was loaded by applying displacement boundary 
conditions on the top surface of the cylinder until it reached 
respectively 90 and 80% of its initial height (i.e. respectively 10 
and 20% displacement). As shown by Morriss et al. (2008), the 
analytical model proposed by Miller (2005) for semi-confined 
compression experiments of very soft tissues is limited to the 
range of conditions before formation of the expansion ring, i.e. 
before the material specimen comes in contact with the com-
pressing platen. All the simulations were carried out with a mixed 
up formulation for all the elements.

3.3. Parametric study

A parametric study has been conducted to evaluate the sensi-
tivity of the cylinder response to the ratios of hexahedra/tetra-
hedra elements in the mixed element meshes. The distribution 
of each mesh is summarised in Table 1. A cylinder mesh named 
cylSXAY has a refinement level X for surface elements and a 
refinement level Y for all the other elements.

3.4. Post-processing

The height of the deformed cylindrical specimen obtained from 
the FE simulation is normalised to allow comparison with the 
theoretical results given in Miller (2005). The normalisation is 
performed as follows: (i) the elevation Z of each node on the side 
of the specimen is scaled relative to the initial height H in order 
to bring all the values in the range [−1, 1] (ii) the current radius r 
characterising the position of each node on the side of the sam-
ple is normalised relative to the initial radius R.

4. Results for cylindrical specimen and 
Interpretations

4.1. Results

Figure 3(a) shows a plot of the deformed shape of the cylinder 
specimen corresponding to a displacement of the machine 
head inducing h / H to change from 1 to 0.9. Figure 3(b) shows 
the same for h∕H = 0.8. Both, the analytical solution and the 
computed numerical solutions are superimposed in the plots. 
Results obtained using linear (enhanced low-order) elements 
are depicted in Figure 3(a) while results obtained using quad-
ratic elements are shown in Figure 3(b). Table 2 contains the 
theoretical and numerical results of the compression experi-
ment. Quantitative evaluation of the deformed shape is based 
on the maximum deflection of the side of the cylinder speci-
men (in Z∕H = 0). This point also corresponds to the maximum 
discrepancy observed between the analytical solution and the 
numerical results. Table 3 contains the numerical results of the 
compression experiment obtained using the different mixed 
element cylinder meshes.

On these two graphs, we can see that the results obtained 
using the dedicated ANSYS linear-enhanced elements and those 
obtained using the quadratic elements are very close, showing 
that the models have converged and that increasing the number 
of degrees of freedom doesn’t change the solution. As detailed 
in Table 2, increasing the number of degrees of freedom from 

3.2. FEA of the compression experiment

A three-dimensional finite element model of the semi-confined 
compression test was constructed using the ANSYS software. A 
cylindrical soft tissue specimen of 40-mm diameter and 30-mm 
height was modelled (Figure 2(a)). Encastre boundary condi-
tions were imposed at the bottom and displacement boundary 
conditions enforced at the top surface to model the movement 
of the stress–strain machine platen.

Three types of meshes were tested: a coarse and fine all- 
tetrahedral mesh (Figure 2(b)) generated using the ANSYS 
 meshing algorithm; a coarse and fine all-hexahedral mesh 
(Figure 2(c)) also generated using the ANSYS meshing algorithm; 
and five mixed element meshes (Figure 2(d)) generated using the 
 automatic mixed element meshing algorithm developed in Lobos 
and González (2015). in this case, all the octants at the boundary 
of the cylinder have the same size but the discretisation of the 
cylinder’s inner section was performed differently. From left to 
right on Figure 2, the mixed element meshes are refined and the 
number of nodes increased until an almost regular hexahedral 
mesh is reached. For the two meshes at the bottom of Figure 2(d), 
the octants at the boundary are smaller than the octants in the 
three previous meshes. Details on the different meshes are given 
in Table 1. in particular, the mixed element meshes have been 
named according to their “refinement level” on the Surface (which 
are the boundary elements) and on the inside. A refinement level 
of 5, for instance, means that the Octant was recursively split into 
8 new octants 5 times. Accordingly, the cylinder mesh named 
cylS4A2, for example, means that a refinement level of 4 was used 
for the surface and a refinement level 2 for all the other elements.

The improvement of the performance of low-order elements, 
for incompressible deformations, has been, in the recent years, 
an important issue. Many finite element software products 
employ low-order elements because they are generally compu-
tationally less demanding and, therefore, faster. in ANSYS, two 
dedicated enhanced low-order elements are proposed for mod-
elling nearly-incompressible materials: (i) a mixed up formulation 
4-node tetrahedral element (ANSYS solid285) and (ii) a reduced- 
integration 8-node hexahedral element with hourglass control 
(ANSYS solid185). The traditional displacement-based linear 
 tetrahedral elements, which are known to perform poorly in near- 
incompressible regime are not available for problems involving 
hyperelastic materials at finite strain. in addition to these two 
enhanced low-order elements, two quadratic elements (i.e. with 
parabolic displacement functions) were also tested: the 10-node 
quadratic tetrahedral element (ANSYS solid187) and the 20-node 
quadratic hexahedral element (ANSYS solid186). The influence of 
the number of degrees of freedom of the enhanced low-order 
mesh was analysed to determine an adequate mesh size (for each 
element type) that provided steady model predictions without 
further need for an increase in mesh density. The same element 
size was used for both the enhanced low-order mesh and the 
quadratic mesh. The number of elements, nodes and degrees of 
freedom for each three-dimensional mesh are given in Table 2.

For the analysis, we used a Neo-Hookean hyperelastic model 
to describe the soft tissue specimen. Values previously reported 
by Buchaillard, Perrier, et al. (2009) for the tongue were used 
(c

1
= 1037 Pa and K = 2.10

7 Pa).
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4.2. Interpretation

The results reported show that mixed element meshes perform 
quite satisfactorily in terms of accuracy and computation time. 
Thus, mixed element meshes are good candidates for model-
ling incompressible materials at large strains, as it is necessary, 
for example, when simulating the biomechanical response of 
human tongue.

The CPu time needed to compute the response was the small-
est for the reduced integration linear hexahedral element with 
hourglass control with an accuracy equivalent to the one that 
is obtained with quadratic elements (532 s for the coarse linear 
all-hexahedral mesh instead of 17,341 for the fine all-hexahedral 
mesh for h∕H = 0.9 case). The computation cost (CPu time) was 
slightly more important with linear mixed elements (661  s for 
the cylS4A2 linear mixed element mesh instead of 17,341 s for 
the fine all-hexahedral mesh for h∕H = 0.9). However, it should 
be emphasised that the mixed element mesh can be generated 
automatically for complex geometries such as the human tongue, 
contrary to hexahedral meshes which require either a manual 
design or an access to the techniques cited in Section 2.1, which 
present some drawbacks such as a regular element distribution 
and very long computation times.

This opens new perspectives for the development of proper FE 
models, for which mesh generation is critical and very time con-
suming. in order to evaluate the performance of the developed 
mixed element meshing algorithm in a more realistic context for 
medical applications, the automatic design of a tongue mesh is 
proposed and assessed in the next section.

19,206 to 483,185 for the tetrahedral mesh has virtually no effect 
on the simulation results.

On these two graphs, we can also observe a significant dif-
ference between the numerical results (at convergence) and 
the analytical solution for the cylinder compression. This is 
due to the fact that many assumptions were made in Miller 
(2005) to derive the analytical solution: the theoretical  solution 
reported is only valid for isotropic, incompressible materials 
and for moderate deformations when it can be assumed 
that planes initially perpendicular to the direction of applied 
extension remain plane. The material used in the numerical 
models is not fully-incompressible and the assumption that 
the planes perpendicular to the direction of the applied force 
remain plane during the experiment is also not verified. The 
error is more important as the imposed displacement increases 
(error increases as the imposed displacement changes from 
h∕H = 0.9 to h∕H = 0.8). This is consistent with the conclusions 
of Morriss et al. (2008).

Although the analytical and numerical solutions do not agree, 
the following conclusions can still be drawn: (i) considering the 
solution obtained using the second order elements as a reference 
value, comparable accuracy can be obtained using mixed element 
meshes with much less CPu time (660 s for the cylS4A2 linear 
mixed element mesh instead of 27,887 s for the fine all- tetrahedral 
mesh for h∕H = 0.9 case) (ii) the linear enhanced low-order ele-
ments available in ANSYS for modelling nearly-incompressible 
materials (using the mixed u-P formulation for the tetrahedral 
element) can correctly handle incompressibility problems in the 
range of deformations considered in our study.

(a) (b) (c)

(d)

Figure 2. (a) Cylindrical specimen modeled for the Fea of the semi-confined compression test, (b) full tetrahedral mesh, (c) full hexahedral mesh and (d) mixed element 
meshes.

Table 1. element type percentage for each mixed element mesh.

 note: the last column shows element count.

Mixed-Mesh Hex. (%) Pris. (%) Pyra. (%) Tet. (%) Total
cyls4a2 22 23 32 23 4064
cyls4a3 25 24 30 21 3936
cyls4a4 77 23 0 0 3864
cyls5a3 15 19 40 26 17,208
cyls5a4 24 18 35 23 17,128
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meshes using our developed automatic mixed element mesh 
algorithm. All four meshes are shown in Figure 4. The two mixed 
element meshes only differ in the type of refinement level used: 
A regular mesh with mixed elements at the surface (Figure 5(a)) 
on the one hand and a non-regular mesh with coarser elements 
in the inner part of the tongue (Figure 5(b)) on the other hand.

The main advantage of the non-regular over the regular 
tongue mesh is the reduction in nodes quantity. in this example, 
the non-regular mesh has only 75% of the number of nodes in the 

5. Application to the modelling of the human tongue

5.1. Meshing the tongue

As mentioned in Section 1, this work is based on a generic 
all-hexahedral tongue mesh that was manually designed. The 
surface mesh of this model was extracted and used to gen-
erate new meshes. in particular, we used the surface mesh to 
automatically generate an all-tetrahedral mesh with ANSYS. 
The same surface mesh was then used to produce two different 

Table 3. Cylinder response as a function of the ratio of hexahedra/tetrahedra elements in the mixed element mesh.

Model Nodes Elem. % Error % Error CPu (s)

h / H = 0.9 h / H = 0.8 h / H = 0.8

Enhanced first order mixed element meshes
cyls4a2 2591 4064 16.1 18.8 693
cyls4a3 2609 3936 16.1 20.0 719
cyls4a4 4035 3864 16.1 20.0 227
cyls5a3 11,054 18,460 16.2 20.2 10,923
cyls5a4 13,105 19,408 13.7 20.2 14,391

Second order mixed element meshes
cyls4a2 11,869 4064 16.7 20.7 658
cyls4a3 11,793 3936 16.7 20.7 681
cyls4a4 15,961 3864 16.7 20.7 1729
cyls5a3 51,831 18,460 17.2 21.5 4811
cyls5a4 58,905 19,408 17.2 21.5 7878

Table 2. theoretical results and errors rates for the numerical simulations of the compression test. For both h / H values, the r / R ratio was at its maximum.

Model Nodes Elem. NDOF h / H 0.9 % Error CPu (s) vF / vI h / H 0.8 % Error CPu (s) vF / vI
theoretical result 1.079 1.180

Enhanced first order elements
tet(coarse) 5262 27,260 19,206 1.067 15.3 1527 0.997 1.147 18.6 1369 0.993
tet(fine) 11,079 60,677 39,885 1.067 15.6 4784 0.997 1.147 18.7 4712 0.993
hex(coarse) 9872 8820 25,914 1.066 16.5 532 0.997 1.144 20.4 531 0.994
hex(fine) 18,425 16,896 50,853 1.066 16.8 1133 0.997 1.143 20.6 1235 0.994
cyls4a2 2591 4064 10,142 1.066 16.1 661 0.997 1.144 20.0 693 0.993
cyls5a4 13,105 19,408 52,775 1.066 16.2 13,267 0.996 1.144 20.2 14,391 0.993

Second order elements
tet(coarse) 39,223 27,260 219,695 1.066 16.3 7327 0.997 1.144 19.9 6441 0.993
tet(fine) 85,933 60,677 483,185 1.066 16.7 27,887 0.997 1.143 20.5 29222 0.993
hex(coarse) 38,391 8820 104,247 1.066 16.5 4583 0.997 1.144 20.3 4713 0.993
hex(fine) 72,113 16,896 203,277 1.066 16.8 17,341 0.997 1.143 20.8 20,850 0.993
cyls4a2 11,869 4064 46,985 1.066 16.7 593 0.997 1.143 20.7 658 0.993
cyls5a4 58,905 19,408 235,981 1.065 17.2 7494 0.997 1.142 21.5 7878 0.994

(a) (b)

Figure 3. plot of the theoretical and numerical results for the deformed shape of the cylinder specimen for h∕H = 0.9 and 0.8: (a) numerical results computed with linear 
elements and (b) numerical results computed with quadratic elements. the mixed element mesh corresponds to cyls5a3.
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To illustrate the influence of the choice of the Finite Element 
Mesh on the static mechanical response of the tongue to muscle 
activation, we focus on the activation of the posterior genioglos-
sus (GGp) with the four tongue meshes: a full hexahedral mesh 
(Figure 4(a)); a full tetrahedral mesh (Figure 4(b)) and two mixed 
element meshes, a non-regular one (Figure 4(c)) and a regular one 
(Figure 4(d)). The activation of GGp compresses the tongue in the 
lower part and generates a forward and upward movement of 
the tongue body due to the incompressibility of tongue tissues.

in order to evaluate the differences in tongue response 
obtained using the various Finite Element meshes, the displace-
ment of the tongue surface was extracted at the nodes in the 
mid-sagittal plane (Figure 7(c)). in order to facilitate the compar-
ison between the different meshes, the displacement was then 
interpolated on a meshgrid and reported on the undeformed 
configuration of the tongue (Figure 7(d)).

Moreover, the following quantities were computed: (i) the 
Dice Similarity Coefficient (DSC), which was used to evaluate the 
spatial overlap of the deformed meshes in the mid-sagittal plane 
and (ii) the equivalent stress and strain in each (3D) tongue mesh. 
Given two sets A and B, the DSC is defined as:

The sets A and B were defined as the surface of the polygon 
specified by the vertices of the tongue nodes in the mid-sag-
ittal plane. The polybool Matlab function was used to compute 
the surface in the mid-sagittal plane corresponding to the 

(1)DSC(A, B) =
2��A

⋂
B��

�A� + �B�

regular mesh. in some modelling problems, computational time 
may be the most important constraint, therefore we include this 
in our analysis. By construction, in both cases, the tongue mesh 
consists of a high ratio of hexahedra to tetrahedra.

5.2. Biomechanical response of the tongue model to GGp 
activation

The muscles influencing the tongue shape consist of the five 
extrinsic muscles (genioglossus, styloglossus, hyoglossus, gen-
iohyoid and mylohyoid) and the four intrisic muscles (inferior 
and superior longitudinal, verticalis and transversalis) as shown 
in Figure 6.

(a) (b) (c) (d)

Figure 4.  tongue meshes used for the simulation of the activation of the posterior genio-glossus (ggp, see Figure 6). Colored elements correspond to ggp. (a) full 
hexahedral mesh, (b) full tetrahedral mesh, (c) non-regular mixed element mesh and (d) regular mixed element mesh.

(a) (b)

Figure 5. using surface and transition patterns: (a) regular tongue mesh including 
only surface patterns, i.e. the roi is the entire domain, (b) non-regular tongue 
mesh including surface and transition patterns, i.e. the roi is limited to the set of 
octants intersecting the input surface.

Figure 6. the tongue shape is determined by five extrinsic muscles and four intrinsic muscles.
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regular mixed element meshes not only match in displacement 
magnitudes but also in displacement directions. The differences 
in the results obtained can be explained by the mesh discreti-
sation which was relatively coarse for the manually-designed 
all-hexahedral mesh and fine for the all-tetrahedra and mixed 
element meshes. The mean value of the DSC is equal to 0.945 with 
a standard deviation of 0.02 for the deformed tongue, suggesting 
a high similarity between the deformed configurations.

in the present case for the modelling problem of the tongue, 
we do not have an analytical solution with which we can compare 
the numerical results computed using the various meshes. Based 
on the results obtained with the cylinder (Section 4 above), we 
assume that the result obtained using the low-order hexahedral 
elements is sufficiently accurate to serve as a reference. in this 
context, our results show that a satisfactory solution is obtained 
using the regular mixed element tongue mesh. These findings 
reaffirm the important statement that mixed element meshes can 
be used as a powerful alternative to hexahedral meshes for the 
analysis of problems involving nearly incompressible materials 
at large strains.

6. Conclusion

The use of FEA as a simulation tool has grown exponentially 
in the biomechanical community in the last decades. These 
numerical models allow to compute approximate solutions of 
partial differential equations and to derive stress–strain laws 
or displacement fields that would, otherwise, be impossible to 

intersection ��A
⋂

B�� and the polyarea Matlab function to com-
pute the surface area of ��A

⋂
B��, |A| and |B|. The results are sum-

marised in Table 4.
Our results show that, as it was the case for the cylinder com-

pression experiment, the computed displacement field (range 
15.8 – 21.6 mm), equivalent stress field (range 17.8 – 22.1 kPa) 
and strain field (range 20.8 – 26%) are very close. Figure 7(d) also 
shows that the results predicted with the hexahedral and the 

(a) (b)

(c) (d)

Figure 7. results were extracted at the nodes in the mid-sagittal plane. (a) mid-sagittal plane in the front view (b) mid-sagittal plane in the top view (c) displacement 
vector field at the nodes on the tongue surface in the mid-sagittal plane. Blue: undeformed configuration of linear hexahedral mesh; green: deformed configuration; 
red: displacement vector extracted at each node. (d) displacement vector field of the tongue meshes interpolated on a common meshgrid to facilitate the comparison.

Table 4. tongue response.

Dice similarity coefficient
tet. and hex. mesh 0.939
tet. and regular m-e mesh 0.926
tet. and irregular m-e mesh 0.930
hex. and regular m-e mesh 0.946
hex. and irregular m-e mesh 0.946
regular and irregular m-e mesh 0.983
Mean displacement (mm)
tetrahedral mesh 21.6 ± 5.0
hexahedral mesh 18.6 ± 3.4
regular m-e mesh 15.8 ± 4.5
non-regular m-e mesh 17.2 ± 5.4
Mean equivalent Stress (kPa)
tetrahedral mesh 1.3 ± 1.3
hexahedral mesh 1.5 ± 2.2
regular m-e mesh 1.7 ± 2.4
non-regular m-e mesh 1.5 ± 2.4
Mean equivalent Strain (%)
tetrahedral mesh 26.7 ± 18.0
hexahedral mesh 25.9 ± 16.9
regular m-e mesh 24.3 ± 17.6
non-regular m-e mesh 20.8 ± 14.6
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of nearly incompressible solids under finite strains. Commun Numer 
Methods Eng. 20:569–583. Available from: http://onlinelibrary.wiley.com/
doi/10.1002/cnm.697/abstract.

Bathe KJ. 1982. Finite element procedures in Engineering Analysis. New 
Jersey, NJ: Prentice Hall.

Blacker TD, Meyers RJ. 1993. Seams and wedges in plastering: a 3-D 
hexahedral mesh generation algorithm. Eng Comput. 9:83–93. Available 
from: http://link.springer.com/article/10.1007/BF01199047.

Bonet J, Burton AJ. 1998. A simple average nodal pressure tetrahedral 
element for incompressible and nearly incompressible dynamic explicit 
applications. Commun Numer Methods Eng. 14:437–449. doi:10.1002/
(SiCi)1099-0887(199805)14:5>437:AiD-CNM162>3.0.CO;2-W.

Bourdin X, Trosseille X, Petit P, Beillas P. 2007. Comparison of tetrahedral and 
hexahedral meshes for organ finite element modeling: an application to 
kidney impact. Presented at the 20th international Technical Conference 
on the Enhanced Safety of Vehicles (ESV), Lyon, France p. 1–10.

Buchaillard S, Brix M, Perrier P, Payan Y. 2007. Simulations of the consequences 
of tongue surgery on tongue mobility: implications for speech production 
in post-surgery conditions. int J Med Rob Comput Assist Surg. 3:252–261.

Buchaillard S, Perrier P, Payan Y. 2009. A biomechanical model of cardinal 
vowel production: muscle activations and the impact of gravity on 
tongue positioning. J Acoust Soc Am. 126:2033–2051.

Cifuentes A, Kalbag A. 1992. A performance study of tetrahedral and 
hexahedral elements in 3-d finite element structural analysis. Finite Elem 
Anal Des. 12:313–318. Available from: http://www.sciencedirect.com/
science/article/pii/0168874X9290040J.

Conti P, Hitschfeld-Kahler N, Fichtner W. 1991. Omega-an octree-based 
mixed element grid allocator for the simulation of complex 3-d device 
structures. iEEE Trans CAD integr Circuits Syst. 10:1231–1241.

Dang J, Honda K. 2004. Construction and control of a physiological 
articulatory model. J Acoust Soc Am. 115:853–870.

Dohrmann C, Heinstein MW, Jung J, Key SW, Witkowski WR. 2000. Node-
based uniform strain elements for three-node triangular and four-node 
tetrahedral meshes. int J Numer Methods Eng. 47:1549–1568. doi:10.1002/
(SiCi)1097-0207(20000330)47:9<1549:AiD-NME842>3.0.CO;2-K.

Fernandes J, Martins P. 2007. All-hexahedral remeshing for the finite 
element  analysis of metal forming processes. Finite Elem Anal Des. 
43:666–679.  Available from: http://www.sciencedirect.com/science/
article/pii/S0168874X07000248.

Fujita S, Dang J, Suzuki N, Honda K. 2007. A computational tongue model 
and its clinical application. Oral Sci int. 4:97–109. Available from: http://
www.sciencedirect.com/science/article/pii/S1348864307800048.

Gérard JM, Wilhelms-Tricarico R, Perrier P, Payan Y. 2003. A 3D dynamical 
biomechanical tongue model to study speech motor control. Res Dev 
Biomech. 1:49–64. Available from: http://hal.archives-ouvertes.fr/hal-
00080422.

González E, Lobos C. 2014. A set of mixed-element transition patterns for 
adaptive 3d meshing. Departamento de informática, uTFSM. Report No.: 
2014/01. Available from: http://www.inf.utfsm.cl/clobos/tech.html.

Hannaby S. 1988. A mapping method for mesh generation. Comput 
Math  Appl. 16:727–735. Available from: http://www.sciencedirect.com/
science/article/pii/0898122188900089.

Huang J, Jiang T, Shi Z, Tong Y, Bao H, Desbrun M. 2014. L1 based construction 
of polycube maps from complex shapes. ACM Trans Graph. 33:25:1–25:11. 
doi:10.1145/2602141.

Joldes GR, Wittek A, Miller K. 2009. Non-locking tetrahedral finite element 
for surgical simulation. Commun Numer Methods Eng. 25: 827–836. doi: 
10.1002/cnm.1185.

Khawaja A, Kallinderis Y. 2000. Hybrid grid generation for turbomachinery 
and aerospace applications. int J Numer Methods Eng. 49:145–166. 
doi:10.1002/1097-0207(20000910/20)49:1/2<145::AiD-NME927> 
3.0.CO;2-W/abstract.

Kieser J, Farland M, Jack H, Farella M, Wang Y, Rohrle O. 2014. The role of oral 
soft tissues in swallowing function: what can tongue pressure tell us? 
Aust Dent J. 59:155–161. doi:10.1111/adj.12103/abstract.

Klingbeil W, Shield R. 1966. Large-deformation analyses of bonded 
elastic mounts. Z Angew Math Phys ZAMP. 17: 281–305. doi:10.1007/
BF01601394.

Kowalski N, Ledoux F, Frey P. 2015. Smoothness driven frame field generation 
for hexahedral meshing. Comput Aided Des. Available from: http://www.
sciencedirect.com/science/article/pii/S0010448515000895.

obtain given the complex geometries and material constitu-
tive laws of human organs. One of the key factors for accurate 
FEA is the mesh generation and the element performance. The 
performance of both hexahedral elements and tetrahedral ele-
ments have been evaluated in a certain number of studies in the 
literature (Cifuentes & Kalbag 1992; Polgar et al. 2001; Ramos 
and Simes 2006; Bourdin et al. 2007; Tadepalli et al. 2011). Much 
effort has also been devoted to the development of non- locking 
tetrahedra, especially in the context of surgical simulations 
(Bonet & Burton 1998; Zienkiewicz et al. 1998, Dohrmann et al. 
2000; Joldes et al. 2009).

The objective of this contribution was to assess whether 
mixed element meshes could be used as an alternative to all- 
hexahedral meshes for the analysis of problems involving 
 nearly- incompressible materials at large strains, as is the case for 
the human tongue, without introducing artificial stiffening in the 
form of volumetric locking that could compromise the accuracy 
of the solution. The case study of the semi-confined compression 
experiment of an elastic cylindrical specimen was analysed using 
FEA and compared with the theoretical expression of deformation 
derived from the literature. Overall, we observed that linear mixed 
element meshes gave results very close to those obtained using 
all-hexahedral meshes at lower computational time. Our results 
also showed that the linear enhanced low-order elements avail-
able in ANSYS for modelling nearly-incompressible materials (the 
linear 4-node tetrahedral element with mixed u-p formulation and 
the linear 8-node hexahedral element with reduced- integration 
and hourglass control) can correctly handle incompressibility 
problems in the range of deformations considered in our study. 
We then assessed the behaviour of mixed element meshes of 
the human tongue. Mixed element meshes were thus proved to 
be efficient and reliable for biomechanical tongue modelling. 
Overall our study opens new perspectives for the development 
of FE models using mixed element meshing algorithms.

Notes
1.  http://www.nlm.nih.gov/research/visible/visible_human.html
2.  http://www.cgal.org
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for Neo-Hookean material with strain energy density per reference volume: 
W = C

1
(I
1
− 3), we have:

So having �z we can find � and then we can compute the bulging f(Z) as 
a function of Z.

(A2)�z =

√
�
2 − 1

�
2
sec

−1(�)

(A3)f (Z) = � cos(
sec

−1(�)

H
Z)

Appendix 1

For a cylinder of height H and radius R which is compressed to the new 
height h while its radius changes to r, it is assumed: z = g(Z) so the stretch 
ratio along the axis of the cylinder is:

if we define f(Z) as the extension ratio in the transversal plane so we 
have: f (Z) = r∕R and its value at center is � = f (0). Due to incompressibil-
ity we have �z�

2 = 1. According to derivation in Klingbeil and Shield (1966), 

(A1)�z =
dg(Z)

dZ

||||Z=0
=

h

H
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